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We derive a general expression for the tunneling time in layered systems based on the Larmor-
clock approach. We show that our results are equivalent to those obtained by the Feynman path-
integral technique. We establish a relation between functional derivatives of the barrier potential and
partial derivatives with respect to the incident energy. In application, we computed the tunneling
time and the reflection time for a rectangular barrier, for a double rectangular barrier and for a

Gaussian potential.

I INTRODUCTION

The question of the time required by a particle to tun-
nel through a barrier is a long-standing problem, which
has raised great interest recently. It is a difficult theo-
retical problem, which has been approached from many
different points of views, as shown in the recent review on
the subject by Landauer and Martin.! The most direct
method to calculate the tunneling time would be to fol-
low the behavior of a wave packet incident on the barrier,
but this type of approach is beset with difficulties, mainly
associated with the dispersive character of the propaga-
tion and with the difficult experimental determination
of the delays due to the barrier.2:® Physically more sig-
nificant is the time during which a transmitted particle
interacts with the barrier, as measured by some physical
clock which can detect the particle’s presence within the
barrier. One of the principal approaches to this prob-
lem is to utilize the Larmor precession frequency of the
spin, produced by a weak magnetic field acting within
the barrier region. The amount of precession clocks the
characteristic tunneling time 77, the so-called Biittiker-
Landauer time.%® The treatment to obtain 77 is equally
valid for energies higher than the maximum barrier po-
tential and even for negative potentials. In these cases
the term traversal time would be more appropriate, but
nevertheless we will use uniformly the term tunneling
time.

In the next section we derive an expression for the tun-
neling time in layered systems and show that it is equiva-
lent to those of Sokolovski and Baskin,® obtained with the
Feynman path-integral technique, and to those of Leav-
ens and Aers,” using the auxiliary barrier potential. We
establish a relation between functional derivatives of the
barrier potential and partial derivatives with respect to
the incident energy. We finally apply our results to a
rectangular barrier, a double rectangular barrier, and a
Gaussian potential.

II. TUNNELING TIME FOR LAYERED
i SYSTEMS

Gasparian and Pollak,® using the Larmor-clock ap-
proach, found that the two components of the Biittiker-
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Landauer tunneling time for an arbitrary barrier are con-
nected with the integrated density of states and the Lan-
dauer resistance and are given by

L
Ty = Re/ G(z,z) de,
0

L
Ty = ImL G(z,z) dz, (1)

where G(z, z) is the retarded Green function (GF) of the
system. In order to calculate these two time components,
we introduce the following general model. Let us con-
sider that our system can be divided into (N — 1) layers,
labeled n = 1,...,N — 1, which are placed between two
semi-infinite media. The positions of the boundaries of
the nth layer are given by z,, and z,,,;. We allow a pos-
sible discontinuity in the potential V,,(z) at each bound-
ary between two layers. Let us assume that we know the
GF of each layer if the corresponding media were infi-
nite, el (z,z'), where the index n refers to the layer.
The upper index will indicate the number of boundaries
considered in the calculation of a given GF. We want to
calculate the final GF which incorporates the effects of
multiple reflections between layers. To this end we use an
exact, nonperturbative, mathematical method, based on
the surface Green function method, proposed by Garcia-
Moliner and Rubio® and by Velicky and Barto$'® to study
the energy spectra of electrons in systems containing in-
terfaces between different crystals. In this method the
GF is evaluated first for the case of a single boundary
between two media. Then, the case of two boundaries is
solved using the GF for one boundary. The problem is
solved iteratively for n + 1 boundaries, considering that
the solution for n boundaries is known.

The GF for the complete system at coinciding coordi-
nates in the nth layer is given by!!

R(—n+N) A

n,n+1
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where Djp is a characteristic determinant, R(") _y is the
amplitude of electron reflection from the left block (when

an electron enters this block from the right), Rf::le) is
the amplitude of electron reflection from the nght block
(when an electron enters this block from the left), and
O,(z,E) is a phase factor. In the Appendix we give the
general expressions for all these quantities, and their par-
ticular values for piecewise-constant potentials, § func-
tions, and tight-binding models.

To evaluate 7, and 7, we have to integrate Eq. (2)
in each layer and sum the contributions of all layers. We
can do this for a piecewise-constant potential, as was first
done by Aronov et al.!! The result is

/wadx Zath. - (3)

Sokolovski and Baskin® applied the Feynman path-
integral approach to calculate the tunneling time, and
they arrive at the following complex time:

L§nt olnty .
W) (4)

where 6/ 6V(a:) is a functional derivative. The modulus of
this expression is the time that Biittiker® obtained for the
tunneling time associated with a Larmor clock in a square
potential. Leavens and Aers'? extended Biittiker’s re-
sults to a general barrier, and show the equivalence of
their results with the results of Sokolovski and Baskin,
approximating the functional derivative with respect to
the potential by the derivative with respect to the aver-
age height of the potential, and keeping the spatial vari-
ation of the potential fixed. We can see immediately
that Eq. (3) is identical to the modulus of the complex
time of Sokolovski and Baskin, Eq. (4), under the fol-
lowing conditions: N — oo while keeping L fixed, and
replacing the sum by an integral. Equations (3) and
(4) are not adequate for practical calculations. Leav-
ens and Aers!? avoid the problem by approximating the
functional derivative with respect to the potential by a
partial derivative with respect to the average potential.
We can rewrite Eq. (3) exactly in terms of partial deriva-
tives with respect to energy (or, eqmvalently, incident
wave vector k = VE). We get
Olnty

— o:niN o, - (N) (N)
Te = zche{ ok T ae ot 1)}
1 8lnty . 1 ) (N)
Ty = ﬁlm {—6k—+ 'Z_E(Ro,l +RByn-1) ¢ (5)

This is a general expression, independent of the layer
model considered The complete expressions for iy,

Rsﬁ), nd R N 1» obtained with the layer model, are
given in the Appendxx The first term on the right-
hand side (RHS) of Eqgs. (5), proportional to 8Intx/dk,
mainly contains information about the region of the bar-
rier. Most of the information about the boundary is
provided by the reflection amplitudes R‘(ﬁ) and R%Yl)v_l,
and becomes important for low energies and/or short sys-
tems.
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The difference between derivatives with respect to the
incident energy and with respect to the barrier poten-
tial was already considered by Leavens and Aers,'? by
Biittiker,'® and by Martin and Landauer'* for a square
potential. Leavens and Aers'? and Biittiker'® showed
that the discrepancy for these two concepts [expressed
by our second term on the RHS of Egs. (5)] can be very
large at small energies. We further discuss this question
in Sec. IVA.

Martin and Landauer!4 obtained the tunneling time for
a modulated incident amplitude in terms of derivatives
with respect to incident energy and they pointed out that
there is no contradiction with the results obtained by
other clock approaches since they correspond to different
times.

Gasparian and Pollak® obtained for 7, and 7, only the
first terms on the RHS of the previous equations. Their
result is correct in the limit of a very long barrier and
not very low energies and in the resonant case, when the
influence of the boundaries is negligible.

III. NUMERICAL METHOD

We have developed a program to obtain numerically
the tunneling and reflection times as a function of the
incident wave vector for any general piecewise-constant
potential barrier, for any set of § functions, and for
tight-binding systems. The evaluation of the integrals
of the GF can be done with the help of the character-
istic determinant.’' This determinant is made up of the
transmission and reflection coefficients of the layers and
can be transformed into the determinant of a tridiagonal
matrix; so its computation can be done very efficiently.

In the Appendix we give the recursive expression of
the characteristic determinant Dy. Once we obtain Dy,
it is easy to calculate the transmission amplitude ¢{) and
the reflection amplitudes Rfﬁ) and Rggl)v_l, which are
the quantities directly entering the computation.

Each time the energy of the particle crosses a potential
plateau the numerical calculation becomes very sensitive
to the values of the energy considered. We evaluate sep-
arately 7r and T for values of the energy smaller than
the plateau and for values bigger than the plateau, and
check that there is no discontinuity.

IV. APPLICATIONS

A. Rectangular barrier

The rectangular barrier, which corresponds to our
piecewise-constant potential with N = 2, was solved ana-
lytically by Biittiker® considering variations with respect
to the potential height. We can obtain the same results
from Eq. (5). For this we have to solve the recurrence re-
lation for DY, Eq (A3), for the case N = 2 and calculate

ty = 1/D, and R$). We find
t3 = 2T'kk [2kk cosh kd + i(k® — k?) sinh xd] (6)

and for the amplitude of reflection
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FIG. 1. Tunneling time 77 and reflection time 7g, as a func-
tion of incident wave vector, for a double rectangular barrier.
The values of the parameters are Vo = 1,d; = 1, and d2 = 1.5.

Rf(,zl) = —~VoI'[(x? — k?) sinh kd + 2ik«x cosh kd] sinh kd.

()
Leavens and Aers!? obtained 7™ and 7{% in a square

potential by considering variations of the incident energy,
as suggested by Biittiker and Landauer.!® In our nota-
tion, the result is

1 2
o =t — o ImRE,

E B 1 2
—7{F) = BL _ mReRéy%. (8)

As this difference in the tunneling time is proportional
to the amplitude of reflection, we conclude that it arises
from boundary effects.

B. Double rectangular barrier

We now apply our results to a double rectangular bar-
rier, N = 4. Let us call the height of the barrier poten-
tials Vo and their width d;. The distance between the
barriers is d,.

In Fig. 1 we represent 7r and 7 as a function of k for
a double rectangular barrier. We choose our parameters
so that there is only one quasibound state per well. The
parameters are Vo = 1, d; = 1, d3 = 1.5. The resonance
corresponds to k = 0.977. We can see in Fig. 1 that in
resonance the reflection time exhibits a maximum.

C. Gaussian barrier

We have applied our method to a Gaussian barrier,
which is approximated by a piecewise-constant potential
with a different number of steps. In Fig. 2 we represent
the tunneling time (short-dashed line) and the reflection

k (cm™)
FIG. 2. Tunneling time 77 and reflection time 7g, as a

function of incident wave vector, for a Gaussian barrier of
height equal to 1 and width equal to 6.

time 75 (long-dashed line), as a function of incident wave
vector. The height of the barrier is equal to 1 and its
spread is equal to 6. The figure corresponds to N = 10,
but the results are basically indistinguishable from those
corresponding to higher values of N.

V. CONCLUSIONS

To conclude, we would like to stress that the GF
method, which is not a perturbation approach, is very
appropriate for practical calculations of tunneling times.
Although our results are based on the Larmor-clock ap-
proach, there are indications that they can be applicable
to a wide range of clocks.
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APPENDIX: CHARACTERISTIC
DETERMINANT

The amplitude of transmission through a multilayered
structure is inversely proportional to the characteristic
determinant, ty = D;,l, which can be expressed as the
product

n=1

N —1/2
Dy = D_?V{ H A11—1,71.(]- - rn,n—l)(l - Tn——l,n)} 3

(A1)
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where the factor Ag,; is defined as equal to 1. The quan-
tity rn—1,n (Tn,n—1) is the amplitude of the reflection of
the electron propagating from the region n — 1 into n (n
into n — 1). The quantity An_1n = An,n—1 is defined by

Bntl idr
)\n—l,n = T)*—-'
e, 2G’(z,z)

DY, is the determinant of a tridiagonal matrix and satis-
fies the following recurrence relationship:

(A2)

Dg = Aan—l - Ban,—z’ (A3)
where A; = D3 =1, D? = 0, and we have for n > 1
Tn—
A, =1+ A1';—1,71."'i(1 —Tn—2mn—-1—" rn—-l,n—z)
Tn—2,n—1
(A4)

and
Tn—1,n
B, = ’\n—l,n“‘—,—'(l - rn—z,n—l)(l - rn—-l,n—2)'
n—2,n—1
(A5)

The reflection amplitude R( ) _, may also be written
in the form

R(N) — D?v+1

NN-1T TR T -(AS6)
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where D%, is given by

(1-rynN_1—7N= 1N)Do
TN-—-1,N
_(—ryn- 1)(1_7'N 1N)Do
N-1,N

=0 _
DN+1"“

-1 (A7)

R( ) can be written in a similar way. In the case of a
R(N )

symmetrlc barrier, we have RSN)

The values of rp,—1 are model dependent For a
piecewise-constant potential we have
c® _ G'( )

raoy = — o e) G EmTn) )

(0)(mmzn) G( )1(337”3771.)

and rp-1n = —Tpn-1. For a tight-binding model and
for a set of § functions, we obtain

-V,G®

1+ V,GP (49)

Tnn—1 =

and r,—1n = Tn,n—1, Where V;, is the nth diagonal energy
in the tight-binding case, and the strength of the nth §
function in the other case. G) (z,z) is the unperturbed
GF, for each case.
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